A Proper Subclass of Maclane’s Class
نویسنده
چکیده
The MacLane’s class of analytic functions is the class of nonconstant analytic functions in the unit disk that have asymptotic values at a dense subset of the unit circle. In this paper, we define a subclass of consisting of those functions that have asymptotic values at a dense subset of the unit circle reached along rectifiable asymptotic paths. We also show that the class is a proper subclass of by constructing a function f ∈ that admits no asymptotic paths of finite length.
منابع مشابه
Frankl's Conjecture for a subclass of semimodular lattices
In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...
متن کاملMixed Estimators of Ordered Scale Parameters of Two Gamma Distributions with Arbitrary Known Shape Parameters
When an ordering among parameters is known in advance,the problem of estimating the smallest or the largest parametersarises in various practical problems. Suppose independent randomsamples of size ni drawn from two gamma distributions withknown arbitrary shape parameter no_i > 0 and unknown scale parameter beta_i > 0, i = 1, 2. We consider the class of mixed estimators of 1 and 2 under the res...
متن کاملA new subclass of harmonic mappings with positive coefficients
Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disk $U$ can be written as form $f =h+bar{g}$, where $h$ and $g$ are analytic in $U$. In this paper, we introduce the class $S_H^1(beta)$, where $1<betaleq 2$, and consisting of harmonic univalent function $f = h+bar{g}$, where $h$ and $g$ are in the form $h(z) = z+sumlimits_{n=2}^inf...
متن کاملCertain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کامل